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This paper describes exact solutions of two-dimensional vortex structures that were 
published by Chaplygin (1899, 1903) at the turn of the last century, which seem to 
have escaped the attention of later investigators in this field. Chaplygin’s solutions 
include that of an elliptical patch of uniform vorticity in an exterior field of pure 
shear and that of a (symmetric or non-symmetric) dipolar vortex with a continuous 
distribution of vorticity translating steadily along a straight path. In addition, a 
solution is presented for a non-symmetric vortex dipole moving along a circular 
trajectory. A concise account of Chaplygin’s solutions is given, complemented by a 
more detailed analysis of some of their relevant properties. 

1. Introduction 
During the last decade there has been an increasing interest in investigating the 

dynamics of inviscid two-dimensional coherent vortex structures under different con- 
ditions. Apart from offering important fundamental problems, coherent vortices are 
also believed to be relevant to the large-scale geophysical flows (see e.g. Flierl 1987). 
The dynamics of coherent vortex structures has been studied in the laboratory in 
a variety of configurations, ranging from a rotating fluid (e.g. Griffiths & Linden 
1981; Flierl, Stern & Whitehead 1983; Kloosterziel & van Heijst 1991, see also the 
review article by Hopfinger & van Heijst 1993) or a stratified fluid (van Heijst & 
Flbr 1989 a, b;  Voropayev, Afanasyev & Filippov 1991) to a shallow layer of mercury 
subjected to a magnetic field (Nguyen Duc & Sommeria 1988) or even a soap film 
(Couder & Basdevant 1986). These experimental studies are all relatively recent. 

On the other hand, the theoretical analysis of solutions of the Euler equations that 
represent the dynamics of isolated regions of distributed vorticity in a two-dimensional 
flow domain have attracted the attention of quite a few investigators since the mid 
19th century. A detailed survey of the results obtained up to the beginning of this 
century can be found in the classical treatises by Basset (1888) and Lamb (1895, 1906), 
and also in the review articles by Love (1887, 1901) and Auerbach (1908). However, 
the number of exact solutions to the nonlinear Euler equations is limited. For patches 
of uniform vorticity in an ambient potential flow region, the circular Rankine vortex 
(Rankine 1858, Art. 633) and the elliptical Kirchhoff vortex (Kirchhoff 1876, Lecture 
XX) are such exact solutions. The Rankine vortex model was used by Maxwell 
(1861 a, b) in his early attempts to describe the nature of electrical and magnetic 
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phenomena (he referred to these structures as ‘molecular vortices’). In contrast to 
the Rankine vortex which represents a stationary vortical flow, the flow associated 
with the Kirchhoff vortex is non-steady, since the elliptical patch performs a steady 
rotation about its centre. During such a rotation, the Kirchhoff vortex preserves its 
elliptical shape. 

Relatively recently, exact solutions were formulated for an elliptical patch of 
uniform vorticity embedded in an external strain and shear flow (Moore & Saffman 
1971; Kida 1981). Depending on the various parameters present in the problem, 
this vortex may exhibit various types of behaviour, including pure rotation (as 
in Kirchhoff’s case), periodic shape pulsations, infinite stretching and remaining 
absolutely fixed in space. 

For an arbitrary two-dimensional compact vorticity distribution a general approach 
based on Clebsch variables was formulated by Hill (1884). As an example of the 
possibilities of this line of approach, the solution for the Kirchhoff vortex was 
obtained. Even after more than a century this method seems to deserve further 
extension and application to two-dimensional vortex problems; to our knowledge, 
this approach has not received any attention since that time. 

A considerable simplification in the analysis of two-dimensional vortex flows can 
be obtained by considering the case of steady motion. For such motions, it was 
shown by Stokes (1842) that any flow field represented by the stream function ~ ( x ,  y ) ,  
defined as 

with (u, v) the velocity components in the Cartesian coordinate system (x ,  y ) ,  is a 
solution of the two-dimensional Euler equations for incompressible fluid provided 
that it satisfies the equation 

where f ( y )  is an arbitrary function of v. 
The first person to try to solve (1.2) for a non-uniform vorticity distribution was 

Lamb. In the second edition of his treatise Hydrodynamics (1895) he considered a 
possible solution for the case of a linear relationship f ( y ) :  

Again, if we put f(y) = - k 2 y .  where k is a constant, and transform to polar coordinates r ,  8, 
we get 

d 2 v  1 d y  1 d 2 y  
dr2 r dr  r2 do2  

~ + -- + -- +& = 0 

which is satisfied by 

y = CJ,(kr)  ‘o’} SO 
sin 

(iii), 

where J ,  is a ‘Bessel’s Function.’ This gives various solutions consistent with a fixed circular 
boundary of radius a, the admissible values of k being determined by 

J, (ka)  = 0. ( iv ) .  

The character of these solutions will be understood from the properties of Bessel’s Functions, of 
which some indication will be given in Chapter VIII. 

The description of this solution was rather sketchy, and details were not given. 
The same possible solution was hinted at in the textbook by Wien (1900) and in 
the review paper by Love (1901). Both authors devoted only a short sentence to 
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this problem, without any elaborations about the choice of the particular y solution 
given by (iii) above. In the third edition of Hydrodynamics (1906), however, Lamb 
added to the quotation from 1895 given above (with changes in the numbering of 
the equations and now omitting the quotes when referring to the Bessel function) a 
significant statement: 

Suppose, for example, that in an unlimited mass of fluid the stream-function is 

y = C J ,  ( k r )  sin 0, (10) 
within the circle r = a, whilst outside this circle we have 

These two values of y agree for r = a, provided J l ( k a )  = 0. Moreover, the tangential velocity at 
this circle will be continuous, provided the two values of &p/ar are equal, i.e. if 

If we now impress on everything a velocity U parallel to Ox, we get a species of cylindrical 
vortex travelling with velocity U through a liquid which is at rest at infinity. The smallest of the 
possible values of k is given by k a / n  = 1.2197; the relative stream-lines inside the vortex are then 
given by the diagram on p. 272, provided the dotted circle be taken as the boundary ( r  = a). It 
is easily proved, by Art. 156(1) ,  that the ‘impulse’ of the vortex is represented by 2zpa2U. 

This dipolar solution with a continuous vorticity distribution on a circular region is 
now generally referred to as the Lamb dipole (and in some cases also as the Batchelor 
dipole, with reference to the description of this vortex structure in Section 7.3 of 
Batchelor 1967). In quite a number of recent laboratory studies on two-dimensional 
coherent vortex structures, dipolar vortices were observed under different conditions 
that show strong resemblance to this theoretical dipole model (see e.g. Couder & 
Basdevant 1986; Nguyen Duc & Sommeria 1988; van Heijst & Flbr 1989a,b; 
Voropayev et nl. 1991). Moreover, Flier1 et nl. (1983) performed an experimental 
study and presented a theoretical description of a non-symmetrical circular dipole 
(the vortex was called ‘modon’ in that paper) with its centre moving steadily along a 
circular trajectory. A similar solution was also derived by Bliss in 1970 (see Saffman 
1992, Section 9.6). 

In summary, a number of exact solutions of the two-dimensional Euler equations 
describing compact vortex structures are now known, some of them being classical 
(Rankine circular vortex, Kirchhoff elliptical vortex, Lamb dipole), others being 
formulated relatively recently (Moore & Saffman and Kida vortices, Flierl-Stern- 
Whitehead dipole). 

A thorough study of the Russian fluid dynamics literature published during the last 
century and at the beginning of this century has revealed that quite a few important 
contributions to vortex dynamics problems have been written (in Russian) which seem 
to have escaped the attention of the international fluid dynamics community. For 
example, important work on two-dimensional point vortex motions was carried out 
by N. E. Joukowskii (1847-1921) and his pupil D. N. Goryachev (1867-1949); their 
works went unnoticed for a long time, but were recently discussed in some detail by 
Aref, Rott & Thomann (1992). Other important contributions to two-dimensional 
vortex flows were made by the Russian scientist S.A.Chaplygin, a pupil and later a 
close associate of Joukowskii. At the turn of the last century he wrote two remark- 
able papers (Chaplygin 1899, 1903) in which he gave detailed descriptions of some of 
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the exact vortex solutions referred to before. In particular, Chaplygin discussed the 
dipole solution (including non-symmetrical ones) with continuous vorticity distribu- 
tion according to a linear relationship f(y), and he also described an exact solution 
of an elliptical uniform vorticity patch in an external flow containing pure shear. 
Because Chaplygin’s contributions seem to have escaped the attention of the fluid 
dynamicists working on two-dimensional vortex problems (some of his results were 
independently discovered much later by other investigators), his work deserves being 
described appropriately. 

In the present paper we will give a brief account of Chaplygin’s results as presented 
in his papers published in 1899 and 1903. In addition, some important aspects of 
Chaplygin’s vortex solutions will be analysed in more detail. In $2, the elliptical 
vortex in an ambient shear field will be discussed. Chaplygin’s dipole solutions will be 
addressed in $3, and an account of his non-symmetric dipolar vortex moving along 
a circular trajectory is given in $4. Some conclusions and a concise discussion of 
Chaplygin’s work are presented in $ 5 .  Finally, a short account of Chaplygin’s life and 
scientific career is presented in the Appendix. 

2. The elliptical vortex in a shear flow: Chaplygin (1899); Moore & Saffman 
(1971); Kida (1981) 

In the introduction to his paper Chaplygin (1899) stated the following problem 
(translated from Russian in the specific terminology of that time): 

In this paper we consider the following case of motion in an unbounded mass of fluid: all 
motion is parallel to the coordinate plane O X Y ;  the velocity components u and u are continuous 
in the entire flow domain; all the fluid contains vortices; vortex lines are parallel to the OZ axis; 
the angular velocity D of vortex rotation inside an elliptical cylinder with OZ axis is constant 
and equals to A + w, and in the rest of the fluid SZ = A ;  the velocity infinitely far from 0.2 is 
parallel to OX and u = -2Ay. We will show that the inner vortex cylinder will change its form 
according to a certain law, rotating with a variable angular velocity around the OZ-axis.? 

In order to solve this problem an assumption about the inner vorticity region was 
made. It was assumed that the initial elliptical vortex cylinder will always remain 
elliptical (figure l a )  with the same value of vorticity, but both its principal axes u 
and b and the orientation angle q5 with the fixed OX-axis depend on time. This 
supposition was verified during the course of the solution. 

The problem of finding the stream function y such that the velocity components 
are defined according (1.1) for the whole two-dimensional motion under a known 
instant vorticity distribution 252 was reduced to the Poisson equation 

(T: T;) av au 
ax ay 252=---=-  -+- 

That equation was solved by means of a traditional approach for that time (Kirchhoff 
1876), namely, by searching the attraction potential of an elliptical cylinder 

XI2 YI2 F(x’, y’) = - + - - 1 = 0, 
a2 b2 

t It should be noted that here the term ‘angular velocity’ means w,/2, with w, the z-component 
of the vorticity vector as used in modern notation. 
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FIGURE 1. Schematic representation of the elliptical vortex and definition of the coordinate axes as 
used by (a) Chaplygin (1899) and ( b )  Kida (1981). 

where 

xf = x c o s 4 + y s i n $ ,  y‘=-xsin++ycos+,  (2 .3~)  
(2.3b) 

After some algebra and by satisfying the conditions of shear flow at infinity, 
Chaplygin obtained the following expressions for the stream function inside (index i) 
and outside (index e )  the elliptical cylinder: 

x = x‘cos+ - yf sin4, y = x’sin 4 + y’cos4. 

a + b  
where 

and A is the non-negative root of the equation 
CI = (a2 + p = (b2 + 

X f 2  Y l 2  +- a 2 + A  b 2 + A  = I ‘  
Then the velocity field inside and outside the elliptical cylinder is given by 

2oab x’sin4 y’cos4 
a + b (  a ‘7)’ ui=-2Ay-- ___ 

(2 .4~)  

(2.4b) 

(2 .7~)  

(2.76) 

( 2 . 8 ~ )  

(2.8b) 
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At the boundary of the elliptical cylinder (where i = 0, SI = a, p = b)  equations 
(2.7) and (2.8) yield u, = u, and zli = ye, implying that the velocity field is continuous. 

In order to obtain the equations for a(t) ,b( t )  and +(t) the kinematic condition on 
the boundary was used. That condition states that the elliptical boundary (2.2) is 
always composed of the same fluid particles. It means that 

DF - d F  d F  aF 
Dt a t  ax d y  

- + u - + v - = o .  

Conservation of the cross-sectional area (as a consequence of Helmholtz’s 1858 vortex 
theorems) of the cylinder implies 

a(t)b(t) = aobo, (2.10) 

with a0 and bo the principal axes of the initial elliptical vortex. After some algebraic 
transformations (collecting the terms with mutual multipliers x ’ ~ ,  Y ’ ~ ,  x’y’), Chaplygin 
obtained the following system of ordinary differential equations for a and 4: 

(2.1 la) 

(2.11b) 

da 
- = -2aA sin 4 cos 4, 
dt 

2wab 
- _  +- 

(a + b)2’ 
“ - 2A 
dt 

a2 sin2 4 - b2 cos2 4 
a2 - b2 

When A = 0 it follows that 

(2.12) 

This solution represents the Kirchhoff vortex (Kirchhoff 1876) - the uniformly rotating 
elliptical patch of fixed shape. 

By introducing the eccentricity 
b 
a’ 

z = -  (2.13) 

and using (2.10), equations (2.11 a, 6) can be put in the more convenient form 

(2 .14~~)  
dz 
- = 4Az sin 4 cos 4, 
dt 

sin2 4 - z2 cos2 4 2wz 
= 2A +- 3 

dt 1 -z2 (1 + z)2’ 
(2.14b) 

Chaplygin showed that this nonlinear system (2.14) has an integrable multiple Z(z) = 
(z2 - 1)/z2 and that the following first integral exists: 

Here K is an integration constant which is determined by the initial conditions 

b0 
z(0) = zo = -, 4(0) = 40 .  

a0 

According to (2.15) 

K sin2 40 420 
4 20 (1 + zo)2’ 

rnln-=- + zocos2~o - rn In 

(2.15) 

(2.16) 

(2.17) 
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FIGURE 2. Schematic representation of the possible types of behaviour of the eccentricity z ( t )  
according to (2.20) with m > 0 for the cases (a)  mlnK/4 > 1, (b)  mlnK/4 < 1 and (c) mlnK/4 = 1. 
The pictures are reproduced from Chaplygin (1899), figures 8, 9 and 10. 

with m = o / A .  The function 4z/(1 + z ) ~  is always less than or equal to 1, and, 
therefore, for m > 0 the value m lnK/4 is positive. 

From (2.15) one derives 

(2.18) 

where 
K 42 

F ( z )  = z - m In - - m In ~ 

4 (1 +z)2’ 
(2.19) 

Therefore the variable 4 can be excluded from system (2.14) and the equation for z ( t )  
has the form 

dz 4Az2 
dt (z2 - 1) 

(2.20) 

The solution z(t) of this equation with initial condition z(0) = zo < 1 (for definition 
purposes, we take bo < a. at the initial moment) gives us through (2.10), (2.13) and 
(2.15) the instant form (axes a and b)  and the orientation (the angle 4 of the major 
axis a with the X-axis) of the elliptical patch. Then using (2.7) and (2.8) it is possible 
to obtain the velocity field in the entire flow domain. 

Chaplygin showed that for m > 0 three different types of motion exist, depending 
on the value of mlnK/4. These cases are graphically illustrated in figure 2(a-c) (they 
correspond to figures 8 - 10 of the original paper). Here the curves labelled 1 and 
2 represent the functions F(z) and F(l/z), and O M  = 1. The points represent the 
roots of the equation F ( z )  = 0 and Chaplygin traced their behaviour graphically for 
various values of the parameter mlnK/4. The points H , Q  and H’,Q’ represent the 
zeros of these functions, H’ and Q’ are inverse to Q and H with respect to the point 
M .  

For the case mlnK/4 > 1 the value of z(t) is changed periodically between the 
points H and H’ (figure 2n). Then according to (2.18) both major and minor axes of 
the ellipse will in turn coincide with the X-axis. Thus, in that case the elliptical patch 
rotates counterclockwise with non-uniform angular velocity. 

For the case mlnK/4 < 1 the value of z(t) is also changed periodically, but now 
between the points H and Q (figure 2b). Then, according to (2.18), cos24 > 0 and, 
therefore, the minor axis of the ellipse never coincides with the X-axis. The major 
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axis of the elliptical patch oscillates around the X-axis. For that case Chaplygin also 
noted (without any further comments) the remarkable possibility of a steady solution, 
when points H and Q coincide and curve 1 only touches the z-axis. This special case 
can be obtained for any value of m, taking 

[(m + I)2 + 4m]’/2 - m - 1 
2 < 1, 4 0  = 0, 20 = Z,in = (2.21) 

and, consequently, F(zmin)  = 0. In that case the elliptical cylinder has a fixed shape 
( z  = zmin) and a fixed orientation (4 = O), and the whole fluid motion is stationary. It 
is easy to understand that this steady elliptical patch is stable with respect to small 
changes in zo or 4o in (2.21): both of them shift curve 1 downward, and the oscillating 
solution is thus obtained. 

In the case mlnK/4 = 1 (figure 2c) the cross-section of the elliptical vortex cylinder 
changes continuously from an ellipse to a circle and vice versa. Once the cross-section 
has become circular (with z = l), equation (2.20) reduces in the limit z -+ 1 to 

dz 
dt 
- = -2A, 

indicating that the shape again has to change into an ellipse. This process is repeated 
permanently. 

The case m < 0 can be analysed in the same manner. We found that for m In K/4  > 1 
the motion is oscillatory, with the major axis coinciding periodically with the Y-axis. 
For rnlnKj4 < 1 (positive or negative) the elliptical patch will perform a rotational 
motion in a clockwise direction. The case mlnK/4 = 1 corresponds with the periodic 
changes from an ellipse to a circle. 

The remaining part of Chaplygin’s paper is devoted to the determination of the 
pressure field p(x ,y )  in the whole fluid - a question which is usually omitted now 
when working in terms of m-y functions. Starting from the Euler equations in the 
following form : 

(2.224 

(2.22b) 

where p is the constant fluid density, he obtained the Cauchy-Lagrange integral 

(2.23) 

with the unknown C depending only on time. 
After tremendous transformations occupying several printed pages, Chaplygin 

obtained expressions for the pressure inside and outside the elliptical cylinder. In a 
form slightly different from the original paper, these expressions are 

(bx’ cos 4 - ay’ sin 4f ab 2 

2ab 
(a + b)3 

= Au- (x’2 + y’2) + Am- Pi - PO 
2P ( a  + b)2 (a + bI2 

+Co2---- (bx’2 + ay’2), (2.24) 
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ab [ 2A (:2 < 2 )  ] +Am---- - - + - - a p +  ab cos 24 
a2 - b2 a + P  

(2.25) 

where po is the pressure at the origin. Again, when 1 = 0, a = a, p = b we have 
continuity of the pressure across the boundary. 

The first term in (2.25) becomes infinite for x’,y’ -+ co. This implies a most 
remarkable result: for w and A of the same sign the pressure at infinity has an 
infinite value; when o and A are of opposite sign the pressure po in the centre of the 
elliptical cylinder has to be very large (strictly speaking, infinite) in order to prevent 
a negative pressure at infinity. The reason for such a behaviour can be understood 
from equation (2.4a) for the stream function ye .  According to (2.23) the term -Ay2 
will be cancelled by the term -2Ay in u,, but the second term o a b  ln(a + p )  gives an 
infinite contribution to the external pressure. Only for the cases o = 0 (pure shear 
flow) or A = 0 (Kirchhoff vortex) is the pressure finite in the entire flow domain. 

Although Chaplygin’s 1899 paper was mentioned in the review papers by Love 
(1901, p. 123) and Auerbach (1908, p. 1061) - his analysis referred to as a generalization 
of the Kirchhoff vortex - it seems to have escaped the attention of the later fluid 
dynamics community. In 1971 Moore and Saffman turned independently to the 
same problem. They considered (Moore & Saffman 1971) the possibility of a steady 
solution for an elliptical patch of uniform vorticity 00 in an external flow field for the 
cases of both irrotational strain and simple shear. They presented the expression for 
y e  in elliptical coordinates and also investigated in much more detail the dependence 
of that steady solution on the parameters of strain (e/oo) and shear ( y l o o ) .  In 1981 
Kida generalized (Kida 1981) that problem to the unsteady motion of an elliptical 
patch of uniform vorticity distribution W K  in an ambient flow field containing both 
shear and strain (figure 1 b). That is, the velocity components of the background flow 
are 

(2.26) 
where e and y are the strain and shear at infinity, respectively. The governing equations 
for the length a(t) of the major axis of the rotating ellipse and its orientation angle 
8(t) to the OX-axis are 

U&,Y) = ex - YY, ~, (x ,y )  = -ey + 7x2 

da 
- = ea cos 28, 
dt 

a2 + b2 . ab d8 
dt a2 - b2 (a + b)2 i- ” 

sin28 +OK------ - - - -ep 

(2.27a) 

(2.276) 

Here b(t) is the minor axis of the ellipse connected with a(t) by means of (2.10). 
The set of equations (2.27) contains three arbitrary parameters OK, e, y and possesses 

very interesting types of behaviour, as studied by Kida (1981) and in some following 
papers (see e.g. Dritschel 1990; Polvani & Wisdom 1990; Dhanak & Marshall 1993). 

A very important, but at the same time very difficult, question concerns the 
stability of the elliptical vortex. Following Love’s (1893) analysis of the stability of the 
Kirchhoff vortex, Moore & Saffman (1971) performed a study of the linear stability 
of a steady vortex patch in an external velocity field for the cases of both pure strain 
and pure shear. The more general case of the nonlinear stability of a non-stationary 
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elliptic vortex, but only for the case of pure strain flow, was studied by Dritschel 
(1990). 

For the specific case e = A,  y = -A (that is a pure shear flow in the directions 
inclined at 7c/4 to the x-axis), by putting 

8 = 2, 4 - 4, wK = -20, (2.28) 

in (2.27) one obtains exactly Chaplygin’s set of equations (2.11) with two arbitrary 
parameters 0 and A.  Therefore, Chaplygin’s solution represents one specific case of 
the more general Kida solution, namely that of an elliptical vortex patch in a simple 
Couette shear flow. 

3. Dipolar vortex moving along a straight line: Chaplygin (1903); 
Lamb (1895,1906) 

In 1903 Chaplygin published another remarkable paper (Chaplygin 1903) devoted 
to the motion associated with a compact vorticity distribution in a two-dimensional 
unbounded inviscid flow. In the introduction of that paper he gave a precise formu- 
lation of the problem: 

Consider an unbounded mass of incompressible fluid in which the motion is parallel to 
the OXY plane; let the motion outside some circular cylinder be irrotational, the velocity being 
equal to zero at infinity. The question is to find a distribution of vortex lines inside the cylinder 
that gives rise to a uniformly translating vortex column with a continuous velocity distribution 
and with a positive pressure all around. 

As a first example of the solution Chaplygin considered in detail a case of rectilinear 
motion of a circular vortex of radius a with a constant translation velocity DO. By 
superimposing on the whole fluid a uniform velocity -UO he obtained a stationary 
problem of a steady vortex cylinder placed in a potential flow with uniform velocity 
at infinity. By choosing the polar coordinate system ( r ,  O), with the origin at the centre 
of the cylinder, the stream function y1 for the potential flow around the cylinder is 
written as 

w1= vo ( r  - ;) sin 0, r > a. 

Inside the vortex cylinder the stream function y has to satisfy equation (1.2), which 
in polar coordinates is 

a2y l a y  1 a2y 
- + -- + -- = f(y). 
ar2 r ar r2 d o 2  (3.2) 

Without any reference to Lamb (1895) or Wien (1900), Chaplygin choose f ( y )  as 
a linear function 

(3.3) 

(3.4) 

2 f (w)  = -n2w (3 = n w, 
where n is a constant, and sought for a solution of (3.2) of the form 

y(r,  8) = Z ( r )  sin 8. 

After satisfying the conditions for continuity of the velocities 
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at the boundary r = a, that is 

at r = a, - awl - w=y17 -- -~ ar ar 
and after some algebra Chaplygin obtained the following solution: 

(3.6) 

(3.7) 

where b = 3.8317 is the smallest positive root of the equation Jl(b) = 0, and n = b/a.  
Here we use the modern notation J , ,  instead of his 11, for the ordinary Bessel function. 

Equations (3.1) and (3.7) present a complete solution for the steady problem. 
Chaplygin also plotted the pattern of stationary streamlines, which is here reproduced 
in figure 3(a) (this is figure 1 in the original paper). The velocity inside the vortex 
has a maximum value in the origin equal to 2 . 4 8 ~ ~ .  By superimposing on the solution 
(3.1), (3.7) a uniform flow of velocity vo in the negative x-direction (that is, take 
yo(r, 8) = -vor sin 8) one obtains the solution of a circular vortex dipole travelling 
with constant velocity vo in the negative x-direction through a fluid, which is otherwise 
at rest at infinity. 

As indicated in 5 1, this solution is identical to that outlined by Lamb (1895) and 
described by Lamb (1906), see the quotations given in that Section. Because no 
references were made to each other’s work, it is assumed that Chaplygin and Lamb 
arrived independently at the same vortex dipole solution, which is now generally 
referred to as the ‘Lamb dipole’. According to the chronological order of the 
publications just mentioned, the name ‘Chaplygin-Lamb dipole’ may seem to be 
more appropriate. 

Although Lamb only devoted a few sentences to the dipole solution, Chaplygin 
presented an extensive analysis of the characteristics of this solution. He determined 
the positions O+, 0- at which the vorticity distribution in the interior region r d a: 

takes a maximum and minimum value, respectively. These points are situated sym- 
metrically at 

7[: 
(3.9) 

c 6 = -a = 0.48a, 0 = +-, 
b -2 

where c = 1.8412 is the smallest positive root of the equation J;(c) = 0. 
Equation (3.8) shows that the vortex dipole has two symmetrical parts of positive 

and negative vorticity distributions in the lower and the upper part of the cylinder, 
respectively (figure 3a). The intensities of the vorticity in each of the parts are 

r+ = la o(r ,  O)r d0 dr = 6.83voa, r- = 1’ la o ( r ,  B)r dB dr = -6.83voa, 
(3.10) 

Also, by using directly the two-dimensional Euler equations Chaplygin calculated 
indicating that the net intensity of the symmetrical dipole is equal to zero. 

the pressure p(r,Q) in the fluid and found that 

(3.11) 

where pm is the pressure at infinity and p is the fluid density. Since y = 0 at 
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the boundary r = a, equation (3.11) gives a continuous pressure distribution. The 
minimum pressure arises at the points of maximum y, that is at points 0+, 0-, given 
by (3.9): 

(3.12) 

The physical constraint pmin > 0 provides a limitation on the velocity uo of the vortex 
dipole motion. 

The symmetric character of the vortex dipole solution led Chaplygin to consider 
the problem of a ‘semi-cylindrical’ vortex moving along a solid wall (figure 3b) with 
free slip conditions on it. It appeared that the lower pressure between points A and B 
(where the velocities are equal to 00 and the pressure equals pm) results in a net force 
of magnitude R = 1.92pavi (per unit length perpendicular to the (Y, @)-plane). In the 
full (circular) vortex dipole, the lower pressure in the central part might explain the 
tendency of the structure to remain compact. 

Furthermore, Chaplygin considered a second example - the natural generalization 
of the symmetrical vortex solution to the case with the interior vortex flow being 
asymmetric with respect to the OX-axis. 

By taking the function f(y) inside the circle r < a as 

f ( y )  = -n2(y - A), o = n 2 ( y  - A), (3.13) 

with A an arbitrary constant and n = b/a as before, Chaplygin found the following 
solution to equation (3.2): 

(here the property Ji(b) = Jo(b) was used). Outside the circular region the stream 
function yl is again given by equation (3.1), representing the potential flow around 
a rigid cylinder. It is easy to verify that for any l the conditions (3.6) are satisfied 
identically. Equations (3.1) and (3.14) thus represent a steady-state solution to the 
two-dimensional Euler equations. Chaplygin’s original plot of the streamline pattern 
for some A > 0 is reproduced here in figure 3(c). In the rest of the paper, this solution 
is referred to as the ‘Chaplygin dipole’. 

To this point we have only presented a review of the analysis given in Chaplygin’s 
(1903) paper. However, the dipole solution (3.14) has some interesting characteristics 
which will now be considered in more detail. 

From the expressions (3.1) and (3.14) for the stream function in the exterior and 
interior domains, respectively, we can derive the corresponding velocity and vorticity 
fields inside (index i), 

(3.1 5a) 

-FJl (%>I s i n O + b L J 1  (%)}, (3.15b) 
br 2 avo 

(%) sine- --J~ b l  (:)I, 
(3.16) 

2 avo 
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x Y Y 

FIGURE 3. Streamline patterns of the dipole solution according to the Chaplygin solution: (a)  the 
symmetrical dipole in an unbounded fluid; ( b )  the semi-cylindrical vortex moving along a flat rigid 
wall with free-slip conditions; and (c) the non-symmetrical dipole. The pictures are reproduced 
from Chaplygin (1903), figures 1, 2 and 3. 

and outside (index e), 

cos8, uf'(r,6') = -vo sin8, d e ) ( r ,  6') = 0 (3.17) 

the circle r = a. These expressions show that at the boundary r = a the velocity field 
is continuous, whereas the vorticity distribution contains a jump discontinuity: 

W(') (U,  6') = -Ab2/a2, d e ) ( a ,  6') = 0. 

Contour plots of y and w are presented in figures 4 and 5, respectively, for different 
values of the dimensionless parameter I/avo. The line y = A (bold line in the plots) 
divides the circular region r d a into two parts. Inside that curve the vorticity is 
positive and outside it is negative. It is seen that with increasing values of A the 
structure of the w-distribution gradually changes into that of a monopolar vortex 
with a nearly circular positive-vorticity core surrounded by a circular band of negative 
vorticity. This can also be seen (figure 6 )  in the cross-sectional distributions along the 
y-axis of the vorticity o and the velocity u = u, cos 6' - u g  sin 8: the positive vorticity 
has an almost symmetrical distribution for A/avo = 2. 

The points 0, and 0- of maximum and minimum vorticity (where according (3.5) 
and (3.13) the velocity is equal to zero) still lie on the y-axis (6' = f7~/2), but they are 
located non-symmetrically with respect to the origin. Using (3.15) it is seen that their 
radii r+(A) = up+ and r-(A) = up- are given by 

with 

(3.19) 

The equation of the curve LO : r = apo(6') inside the vortex dipole at which co = 0 is 

Jl(bp0) sin 6' - &(bpo) = 0. (3.20) 

Equations (3.18) and (3.20) can be easily solved numerically providing all neccessary 
data for further analysis. 
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FIGURE 4. Streamline patterns of the non-symmetric Chaplygin dipole rperesented by (3.14). for 
A/avo = 0.25 (a), 0.5 (b) ,  1.0 (c) and 2.0 (d). The bold line corresponds with y = A. The streamlines 
are plotted for Ay = 0.25 avo (u, b )  and dly = 0 . 5 ~ ~ ~  ( c , d )  

Integration of the vorticity distribution over the entire region r < a shows that the 
net vorticity of the Chaplygin dipole is equal to zero. The positive value r+(l) of the 
intensity on the region S+ bounded by the Curve L~ (figure 7) is given by the integral 

r+ = 1 h, o ( r ,  O)r dr d0. (3.21) 

It is in principle possible to calculate the surface integral (3.21) directly, by using the 
results of the numerical solution of equation (3.20), but this is a rather cumbersome 
procedure. A more simple way consists of using Stokes’ theorem for (3.21) and putting 
the following : 

where pb(0) is easily obtained explicitly from (3.20), namely 
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FIGURE 5. Vorticity contour plots of the non-symmetric Chaplygin dipole represented by (3.16) 
for L/avo = 0.25 (a), 0.5 (b), 1.0 (c )  and 2.0 ( d ) .  The iso-vorticity contours are plotted for 
Aw = 5vo/a (a,b,c) and for dw = lOuo/a ( d ) .  The bold line corresponds with o = 0, while the 
dashed lines (the circular boundary line and the inner separating line) are curves with w = -b2L/a2. 

Then (3.22) is a simple ordinary integral which can be calculated numerically without 
any problems. The result of such a calculation of r(1) is presented in figure 8. 

For 1 = 0 one obtains a value r+(O) = 6 . 8 3 ~ ~ 0 ,  which corresponds with the value 
(3.10) of the symmetrical (Lamb) dipole. When A/avo > 1 the value of r+(l) increases 
practically linearly with A. In order to understand this behaviour let us consider the 
asymptotical solutions of (3.18) and (3.20) for p + ( l )  and po(8) when 3 >> 1. The 
radius R(8) of the nearly circular domain (figure 7) with its centre at O+ is easily 
found by means of the cosine theorem. After straightforward calculations one obtains 

w,,, = -00- 1 1 + --=- , (3.24) 
2b - ( 8 i 2 )  2d12 ' aJo(b) 

U ad cos2e r+(1) = -, 
b l  

R(8) 7 + a- 
where d = 2.4048 is the first zero of Jo. These relations show that for large 2 the 
point O+ of maximum positive vorticity tends to 0, and that the shape of the w > 0 
domain becomes almost circular, with an asymptotic radius 0 .63~ .  The data of figure 
4(d)  indicate that the vorticity distribution inside the o > 0 domain S+ is practically 
independent of 8 when A/avo > 1. The total vorticity on S+ can be approximated 
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FIGURE 7. 
non-symmetric Chaplygin dipole. 
and minimum vorticity, respectively. 

Schematic representation of the positive- and negative-vorticity regions of the 
The points 0, and 0- denote the positions of maximum 

by calculating the volume of the semi-ellipsoid with a circular base S+ and a major 
semi-axis om,,. This yields 

(3.25) 
avo jJo(b) avo 

and this dependence is shown by the dashed line in figure 8. 
If again a uniform flow of velocity vo in the negative direction of the x-axis is 

superimposed on the solutions (3.1) and (3.14), we get the final solution for the 
Chaplygin dipole - the circular vortex travelling with uniform velocity vo in the 
negative direction along the x-axis through a fluid which is at rest at infinity. The 
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hlav, 

FIGURE 8. Graphical representation of the normalized positive intensity r+/auo of the Chaplygin 
dipole as a function of the parameter I/auo: the solid line represents the exact calculation according 
to (3.22), whereas the dashed line denotes the approximation (3.25). 

vorticity distribution o ( x ,  y ,  t )  inside the circular domain is given by (3.16) putting 
r2 = (x + vot)2 + y2, sin 8 = y / r .  

Using the general formulae (Batchelor 1967, Section 7.3) for the components P ,  Q 
of the linear momentum, the angular momentum N about the origin, and the kinetic 
energy W of the fluid which is rest at infinity, 

yodS,  Q = -p  (X2+y2)odS, W = 

(3.26) 
one obtains for the Chaplygin dipole 

3 2  P = -2nu2pv~,  Q = 0, N = 2na pvo-, W = na’pv; 
avo 

Obviously, the linear momentum ( P ,  Q) does not depend on I ,  and the values of P 
and Q are the same as for the symmetric Chaplygin-Lamb dipole (A = 0). 

An important invariant of two-dimensional inviscid motion is the enstrophy G, 
which is defined by 

G = -  W2dS. :I 
Using (3.16), the enstrophy of the Chaplygin dipole is found to be 

(3.28) 

(3.29) 

Minimum values of the enstrophy G, and the kinetic energy W ,  are apparently 
obtained for the symmetric case ;I = 0. 

Again, the question of stability is one of the most important, but Chaplygin did 
not mention it. The condition for linear stability of an arbitrary solution of (1.2) was 
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formulated by Maxwell in a draft manuscript (1855 a)? and also in a letter to William 
Thomson (1855 b). In the latter he wrote: 

I have been investigating fluid motion with reference to stability and I have got results 
when the motion is confined to the plane of xy. I d o  not know whether the method is new. It 
only applies to an incompressible fluid moving in a plane. 
... 

d2y, d2y, x = ;i;r + v. 
Hence 

(A) 

(B) 
4 = 0 or x = f (w) is the condition of steady motion as is otherwise known. 

f r ( b )  or 0 must be negative for stability. 
When f’(w) is positive the motion is unstable. 
When f’(w) = 0, x is constant or 0. 
When x is constant I think equilibrium is neutral. 
When x = 0 the whole motion is determined by the motion at a limiting curve so that there can 
be no finite displacement. 

It should be noted that Maxwell anticipated the analysis performed more than a 
century later by Arnol’d (1965) and Drazin & Howard (1966); this is another story, 
however, which deserves in our opinion a separate study. 

It is easy to verify that both the Lamb and the Chaplygin dipoles satisfy the 
condition f’(y) < 0 and, therefore, both are stable according to Maxwell’s criterion. 
However, numerical simulations (R. Verzicco and J. Voskamp, private communica- 
tions) of two-dimensional flow with the initial vorticity distribution (3.16), both for 
viscid (Re = 1000) and practically inviscid flow, indicate that the Chaplygin dipole is 
essentially unstable: when 1 > 0 it sheds some negative vorticity which is left in its 
wake and the vortex structure is slightly deflected in the direction of the positive vor- 
ticity. When A = 0 (the symmetric Chaplygin-Lamb dipole) such a dipolar structure 
moves along a straight line while conserving its compact shape. The reason of this 
difference is not quite clear yet, and deserves being investigated further. 

4. Dipolar vortex moving along a circular path: Chaplygin (1903); Flierl, 
Stern & Whitehead (1983) 

In the last part of his remarkable paper Chaplygin (1903) briefly describes one 
additional case of a steadily moving circular vortex dipole. For that purpose, he 
added to the non-symmetric dipole a monopolar Rankine vortex: a circular patch of 
radius a with a uniform vorticity -21c/a2. For this additional monopolar vortex the 
expressions for the stream function y 2  and the vorticity o2 are 

7 Here Maxwell missed a minus sign in the derivation, so his final result has to be changed 
accordingly. 

$ Maxwell used the notations d / d x  and d / d y  for the partial derivaties with respect to the 
coordinates x and y ,  and d / d t  for the full derivative with respect to time (‘as we pass along the 
path of the particle’). 
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It is easily verified that such an addition still satisfies the condition J ( o ,  y )  = 0 in the 
two-dimensional inviscid vorticity equation for the flow to be steady. 

In order to obtain a stationary solution to the Euler equations Chaplygin used a 
coordinate system that rotates uniformly with angular velocity k-/a2. This approach is 
equivalent to adding a rigid-body rotation at infinity. Expressed in a polar coordinate 
system with the origin at the centre of the vortex dipole, Chaplygin’s solution reads 

For prescribed values of uo and a, this solution depends on two dimensionless 
parameters, namely A/avo and rc/avo. Examples of steady streamlines according (4.3) 
for some values R and K are presented graphically in figure 9. The streamline pattern 
inside the region r d a is only dependent on R, whereas the streamline pattern outside 
the vortex dipole depends only on K .  

By applying the Euler equations in the uniformly rotating frame Chaplygin also 
calculated the pressure field in the entire flow domain and proved its continuity across 
the dipole boundary r = a. 

The exterior solution for the vortex dipole is a special case of the general solution 
for a rigid cylinder of radius r = a with circulation R moving with velocity U through 
an inviscid fluid that rotates uniformly at angular velocity oo/2 (see Batchelor 1967, 
Section 7.4) : 

(4.5) 

The link with the present problem is provided by 

2 K  

a2 ’ 0 0  = - R = --2xIc, u = -vo. (4.6) 

Finally, by superimposing on the solutions (4.3), (4.4) a uniform rotation with 
angular velocity ~ / a ~  about a central point (rc,  Oc), with 

Chaplygin obtained an expression for the flow due to a vortex dipole of net vorticity 
2nrc moving at uniform speed along a circular trajectory with central point (rc,B,) 
through an irrotational fluid that is at rest at infinity. 

For the steady solution (4.3),(4.4) the functional relation between o and y is 

Equation (4.7) shows that on the dipole boundary r = a, where y = 0, the 
vorticity has a jump -(b2A + 21c)/a2. The o-y relationship is plotted in figure 10, 
and it can be seen that the jump is due to an upward shift 2 ~ / a ~  of the horizontal 
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FIGURE 9. Streamline patterns of the Chaplygin dipole moving along a circular trajectory, as repre- 
sented by (4.3). The streamlines are plotted for IC /UUO = -0.5 and A/auo = 0 (a),0.06811 (b),0.25 (c )  
and 0.5 (d).  Case ( b )  corresponds to the FSW solution. 

branch representing the exterior flow, and a downward shift -b2il/a2 of the branch 
representing the interior of the dipole. 

Chaplygin's solution was obtained independently a few years ago by Flier1 et al. 
(1983) in a study of dipole formation by a jet in a uniformly rotating fluid. In the 
'modon' frame (using their terminology and notation, and after correcting for some 
misprints) their steady solution (henceforth referred to as FSW) is given by 

c ( r  - f> sine 
r 

- celn - 
a 

?E [ I -  
k2a 

where c is the speed of the modon along the circular track, E is the ratio of the 
modon radius a and the radius of its circular trajectory, and ka = 3.8317 is the first 
zero of the Bessel function J1. Essentially the same solution (in slightly different 
notation) was formulated by Bliss in 1970 (see Saffman 1992, Section 9.6) and also 
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FIGURE 10. Graphical representation of the w-v relationship of the Chaplygin dipole moving along 
a circular path, according to (4.7). The exterior field and the dipole’s interior correspond to the 
horizontal and inclined lines, respectively. The solid lines denote the general case, while the dashed 
line represents the FSW case (4.10). 

mentioned briefly by Nycander & Isichenko (1990). Experimentally such asymmetric 
vortex dipoles were also studied by Nguyen Duc & Sommeria (1988). 

It is seen that for given c and a the solution (4.8) depends on a single dimensionless 
parameter, f. This parameter defines the angular velocity s2 = ce/a and the radius of 
the track A = a/€. It is easy to prove that (4.8) is a particular but important case of 
Chaplygin’s general solution (4.3). By putting in (4.3) 

2C€ 
k2a 

vo = c, b = ka, I = -, IC = --ECU (4.9) 

one obtains (4.8) (up to an additional constant ~ / 2 ) .  The importance of the FSW 
solution lies in the fact that, in terms of Chaplygin’s solution, we have 

2K A = - -  
b2 ’ (4.10) 

so the jump in the vorticity at r = a is absent. The o-y relationship is again given 
by (4.7) but the interior branch now intersects the horizontal exterior branch exactly 
at the o-axis. This FSW case is indicated by the broken line in figure 10. 

5 .  Conclusions 
Since the seminal paper of Helmholtz (1858) in which some fundamental vortex 

theorems were formulated, the subject of vorticity dynamics has continued to attract 
many fluid dynamicists. It is interesting to note that in this field, more than in 
any other branch of fluid mechanics, many independent discoveries were made 
both of the governing equations describing certain vortex flows and of some exact 
analytical solutions of these. One example is the careful analysis of the three-vortex 
problem by W. Grobli in the dissertation published in 1877 (for a detailed historical 
survey, see Aref et al. 1992): quite a few of the results described in his thesis were 
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rediscovered almost a century later! Another example is the localized induction 
approximation (LIA) for the motion of a vortex filament: the governing equations 
for this approximation had already been published in 1906 by the young Italian 
graduate student L.S. Da Rios, who worked under the supervision of T. Levi-Civita. 
As discussed by Ricca (1991), in the course of the present century these LIA equations 
have even been independently rediscovered even a few times. 

The same appears to have occurred to two papers published by the Russian 
scientist S.A. Chaplygin at the turn of the last century. In these papers he analysed 
the flow due to an elliptical vortex patch in an ambient flow field with uniform 
vorticity (Chaplygin 1899) and the structure of a circular dipolar vortex with a 
continuous vorticity distribution according to a linear o-y-relationship (Chaplygin 
1903). Probably because these papers were written in Russian, they went unnoticed 
for a long time. 

The analysis of the elliptical vortex patch presented in the 1899 paper was quoted 
by Love (1901) and Auerbach (1908) as a generalization of Kirchhoff’s elliptical 
vortex. Independently, a generalization of the Kirchhoff vortex was made by Moore 
& Saffman (1971), who considered steady-state solutions for an elliptical vortex patch 
in pure straining and simple shear flows. After construction of such solutions (one 
of them was mentioned by Chaplygin only briefly) these authors go further and do 
the linear stability analysis for general disturbances of a vortex patch boundary. This 
does not appear to have been studied by Chaplygin at all. Kida (1981) published 
another generalization of Kirchhoff’s unsteady vortex to the case of an ambient flow 
containing both strain and vorticity. Again, Chaplygin’s solution was not mentioned, 
although it corresponds with a special case of the Kida solution, viz. that of an 
elliptical vortex patch in a simple Couette shear flow. 

In the second paper, discussed in the previous sections, Chaplygin (1903) presents 
an analytical solution of a dipolar vortex with distributed vorticity inside a circular 
area, according to a linear w-y relationship. Apparently, he was not aware of the 
texts of Lamb (1895) and Wien (1900), in which brief remarks were made about the 
possibility of having such solutions. Chaplygin presented analytical solutions both for 
the dipolar vortex moving steadily along a straight path and for the dipole moving 
steadily along a circular track. In the former case, his symmetrical dipole solution 
is identical to that outlined by Lamb (1895) and described in some more detail by 
Lamb (1906). As discussed in the preceding sections of the present paper, however, 
Chaplygn (1903) provides a much more detailed analysis of the dipole characteristics. 
Moreover, Chaplygin gave a generalization to the case of a non-symmetric dipole 
moving steadily along a straight line, and the details of this remarkable solution were 
discussed in 9 3 of the present paper. 

Another generalization concerned the addition of a monopolar ‘rider’ solution, 
leading to a non-symmetric dipolar vortex moving along a circular path is discussed 
in 94. An analytical solution of such a dipolar vortex structure was also presented 
much later by Flier1 et al. (1983), and again Chaplygin’s earlier work appeared to be 
not known. The FSW solution is a special case of Chaplygin’s general solution, viz. 
that in which the jump in the vorticity at the vortex edge is exactly zero (see figure 

The main purpose of the present paper is to bring the earlier work of Chaplygin on 
two-dimensional coherent vortex solutions to the attention of modern fluid dynami- 
cists, since most of them appear to be ignorant about his important contributions to 
the subject. In contrast to the widespread ignorance of Chaplygin’s early papers in 
the western parts of the world, his contributions are still known in some small circles 

10). 
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of Russian scientists, as is apparent from the relatively recent studies of Slezkin (1988) 
and Yarmitskii (1992) in which a generalization of Chaplygin’s cylindrical vortex is 
discussed. Such references were found to be very scarce though. 
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Appendix. Biographical sketch of Sergey Alekseevich Chaplygin 

S. A. Chaplygin was born on 5 April 1869 in Ranenburg, a town not far from 
Moscow. He studied at the Department of Physics and Mathematics of the Moscow 
University, where he attended the lectures on hydrodynamics by N. E. Joukowskii. 
In 1894 he became an assistant professor at Moscow University and a few years 
later he was appointed as a full professor. During a period of almost 20 years 
he held positions as a lecturer in mechanics and mathematics at various institutes 
of higher education in Moscow, including the Moscow University and the Moscow 
High School of Technology. In the period 1921 to 1931 he was director of the 
Central Aero-Hydrodynamic Institute (TsAGI), a research institute founded in 1918 
by Joukowskii; following this he headed the Institute’s general theoretical team. In 
1942 (at the age of 73) he died in Novosibirsk, to which TsAGI was evacuated during 
World War 11. 

Chaplygin did much pioneering work on several topics in gasdynamics, hydro- 
dynamics, aerodynamics and also on some topics in general mechanics and pure 
mathematics. After his death his collected papers were published in 1948-1950 in 4 
volumes (I, Theoretical mechanics and mathematics; 11, Hydromechanics and aerody- 
namics; 111, Lectures and presentations on mathematics and mechanics; IV, Lecture 
courses on theoretical mechanics), and selections of his many papers on mechanics 
and mathematics were re-published in 1954 and 1976. 

His significant scientific contributions to the development of mechanics are cited 
in numerous books and papers. In this respect we mention Loitsyanskii’s (1966) 
textbook on hydrodynamics and the review paper by Grigoryan (1965), to which the 
interested reader is referred. It is interesting to note that none of these publications 
mentions Chaplygin’s (1899, 1903) early papers on vortex dynamics that form the 
subject of the present study. 

Without attempting to review Chaplygin’s complete scientific oeuvre we will briefly 
mention some of his most important contributions to the fields of hydrodynamics, 
gasdynamics and aerodynamics. In his magister dissertation, which was published in 
1897 in the form of two large articles, and for which he was awarded the gold medal 
of the Russian Academy of Sciences, Chaplygin considered some new integrable cases 
of motion of a solid body in an inviscid fluid and gave (in line with Joukowskii’s 
tradition) a clear geometrical model for its movement. In spite of the fact that 
they were published almost a century ago, these papers deserve more attention. In 
1904 Chaplygin published his famous doctoral dissertation entitled ‘On gas jets’ (the 

(1869-1942) 
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defence of this thesis took place at the Moscow University in the year 1902), by which 
he made a fundamental contribution to the development of the theory of gasdynamics. 
In this remarkable work he described the elegant technique of changing from the 
physical plane of two-dimensional flow to the ‘hodograph plane’ of flow velocities, for 
which the equations of motion become linear. In the same year Chaplygin published 
an annotated Russian translation of two fundamental papers by Helmholtz, viz. on 
vortex motion (Helmholtz 1858) and on discontinuous motion in an ideal fluid. In 
1906 Chaplygin and Joukowskii published a rigorous solution in terms of so-called 
bipolar coordinates to the problem of two-dimensional flow of a viscous fluid between 
two eccentric rotating cylinders (now commonly referred to as the journal bearing 
flow). Chaplygin also contributed greatly to various aerodynamic problems. During 
the XIIth Congress of the Russian Society for Natural Sciences and Medicine (which 
was held in Moscow from 28 December 1909 to 5 January 1910), in a discussion of a 
report by Joukowskii devoted to determination of the lift force on a two-dimensional 
airofoil, Chaplygin postulated that the fluid must leave the sharp trailing edge of the 
airofoil smoothly. This so-called Chaplygin-Joukowskii hypothesis is also linked with 
the German scientist Kutta, whose work on the problem of the lift force on a particular 
type of aerofoil was published some years earlier (in 1902). Furthermore, Chaplygin 
and Joukowskii were the first to describe (in 1910) the mapping of the exterior of a 
circle to the exterior region of a closed aerofoil-like profile; this conformal mapping 
is now commonly known as the Joukowskii transformation. In 1910 Chaplygin also 
published a paper in which he derived the equations for the forces and the moment 
on an aerofoil in a uniform (potential) flow in terms of contour integrals involving 
the complex flow potential; these results appeared at the same time as Blasius’ similar 
expressions, which are now usually referred to in the literature. The analysis was later 
extended to various types of aerofoils, and in 1926 Chaplygin published a paper in 
which the generalization to unsteady flows was described. Also in 1910, Chaplygin 
published a paper in which he described the representation of a wing of finite span 
by a system of vortices - a similar investigation was published in the same year by 
the German scientist S. Finsterwalder. One year later (191 1), Chaplygin presented 
the corresponding expressions for the lift and the induced drag forces. Because 
his theoretical results were contradicted by experimental results obtained in a wind 
tunnel that later appeared to have been too small, Chaplygin initially refrained from 
publishing his results in the scientific literature; this work was only published twenty 
years later. At approximately the same time, Ludwig Prandtl developed the closely 
related lifting-line theory, which became widely used in aerodynamics. For a historical 
account of the development of the theory of aerofoils, and in particular Chaplygin’s 
contributions to this topic, the interested reader is referred to Satkevich (1923), 
Giacomelli & Pistolesi (1934) and Goldstein (1969). Chaplygin’s pioneering work 
also included a study (manuscript dated 1921) of the interaction of two-dimensional 
vortex flow with some cylindrical obstacles (for which he derived analytical solutions) 
and of the stability of certain point vortex configurations. 

It should be noted that Chaplygin’s papers were all published in Russian, which is 
probably the reason why quite a few of his important contributions have escaped the 
attention of the wider fluid dynamics community. Although Chaplygin’s papers were 
published quite some time ago, in our opinion they are still interesting and valuable 
for the present-day fluid dynamicist. 

People interested in visiting Ranenburg, Chaplygin’s place of birth, will not be able 
to find this town on the map: today this town bears the name Chaplygin, in honour 
of the great scientist that was born there in 1869. 
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